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ABSTRACT 

Colorectal cancer (CRC) is the third leading cause of cancer deaths with an 

estimated 57,000 deaths per year in the United States. Evidence for a role of 

estrogens in colon cancer is accumulating, although the mechanism through which 

this is mediated is not clear. Epidemiological studies suggest that post-menopausal 

hormone replacement therapy (HRT) reduces CRC incidence. There is also 

evidence to suggest populations that consume soy and soy foods have reduced 

colon cancer risk. Soy contains phytoestrogens, such as the isoflavone genistein, 

that are similar to endogenous estrogens. Several studies have suggested 

isoflavones may have potential anticarcinogenic effects. In previous work, our group 

found a reduced colon tumor incidence in carcinogen-treated mice fed diets 

containing estrone (E1). Moreover, several epidemiological studies indicate a 40-

50% reduction in the risk of developing colorectal cancer with chronic use of 

nonsteroidal anti-inflammatory drugs (NSAIDs) such as aspirin. It is suggested that 

NSAIDs providE~ anticancer activity by inhibiting both isoforms of the cyclooxygenase 

(COX) enzyme: COX-1 and COX-2. Increased COX-2 activity is an early event in 

CRC. With emerging evidence indicating suppression of COX by estrogens we 

hypothesized that dietary genistein or estrone (E1) would reduce aberrant crypt foci 

(ACF), purported preneoplastic markers of colon carcinogenesis, and 

cyclooxygenase-2 (COX-2) protein levels. Ovariectomized female mice were fed 

diets containing casein (Casein), soy protein without isoflavones (Soy-IF), soy 

protein with genistein (Soy+Gen) or soy protein with estrone (Soy+E1) from 3 weeks 

of age. Starting at 4 weeks of age, all animals were administered weekly injections 
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of azoxymethane (AOM) 10 mg/kg of body weight for 6 weeks, and then terminated 

6 weeks after the last dose of AOM. Colons sections stained with methylene blue 

were visualized under a light microscope forACF, and COX-2 protein levels were 

analyzed by Western Immunoblot. A significant effect of diet on COX-2 protein 

levels but not A►CF was observed. COX-2 protein levels were lower in mice fed 

Soy+E1 and Soy+Gen compared with mice fed Casein or Soy-IF. Thus, we 

conclude that soy protein with genistein and soy protein with estrone downregulated 

COX-2 levels ire mouse colon suggesting a potential role in reducing colon cancer 

risk. 
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CHAPTER 1 

LITERATURE REVIEW 

Overview of colorectal cancer 

Cancer remains one of the most common malignancies in Western countries, 

including the United States and other developed countries (1). Cancer accounts for 

approximately ;?3% of total deaths, ranking second only to heart disease in the 

United States (1). Colon cancer is the third most commonly diagnosed cancer 

among men and women next only to lung and prostate/breast cancer (1, 2). The 

incidence of colorectal cancer (CRC) is about 1 million (9.4%) world wide with no 

significant differences between men and women (1, 2). In the United States, the 

estimated deaths due to CRC were 56,290 with 28,540 and 27,750 among men and 

women, respectively, in 2005 (2). 

Although, there is little overall gender difference in the risk of colon-cancer, 

the age-specific colon cancer gender ratios vary considerably. Males tend to have a 

higher risk than females of CRC until 35 years of age after which the mortality and 

incidence rates among women increases remarkably resulting in little overall gender 

difference in colon cancer risk (3). The observation by McMichael and Potter (3) in 

age-specific colon cancer ratios between sexes especially below 35 years and 

between 35-54 years led them to suggest a role for female sex hormones in the 

etiology of colon cancer. Further, the transient decline in colon cancer mortality 

rates in women between ages 35-44 during the early 1970's against an overall 

increasing trend in other years made them to suggest a correlation to the use of oral 

contraceptives by women a decade earlier (3). 
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There is at least 25-fold variation in the occurrence of CRC world wide with 

the highest incidence being in North America, followed by Australia and other 

developed countries (1-3). The vast geographical variation in the incidence could be 

attributed to the differences in environmental exposures including diet (1-3). 

Epidemiological studies pertaining to the migrant Asian population to Western 

countries and their increase in incidence rates of CRC even in the first generation 

indicate the rolE~ of environment, particularly that of diet in this disease (1, 2, 4). 

Furthermore, a large discrepancy in the incidence and mortality rates of colon 

cancer between ethnic groups in the United States has also been reported. African 

Americans have the highest incidence rates, whereas Hispanics, Asians/Pacific 

Islanders, and American Indians/Alaskan Natives have the lowest, with the incidence 

in Whites falling in the middle (2, 5). The contribution of diet to these differences has 

not been well defined. 

Environment and diet in the etiology of cancer 

Many environmental factors contribute to CRC incidence rates. Some of 

these environmental factors include carcinogens (whether identified or not) such as 

man-made chemicals or naturally occurring carcinogens, viral infections, nutritional 

deficiencies or excesses, reproductive activities, physical activity, radiation exposure 

that can be controlled wholly or partly by lifestyle changes. An important role of 

nurture/environment in the etiology of colon cancer was first proposed by Doll and 

Peto (6). Some of the major avoidable causes of cancer include tobacco, alcohol, 

diet, food additives, reproductive and sexual behavior, occupation, pollution, 

medicines and i~nedicinal procedures, infection, geophysical factors, and industrial 
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products (7). For many years there has been strong but indirect evidence that many 

of the cancers could be avoided by lifestyle changes (6). After an extensive review of 

literature the American Institute of Cancer Research and World Cancer Research 

Fund concluded that cancer is principally caused by environmental factors which 

include tobacco, diet and factors related to diet, including body mass index and 

physical activity, and occupational exposures (7). Consumption patterns of meat, fat 

(specifically animal fat), and fiber have been strongly correlated with the incidence of 

colon cancer (7-10). 

Dietary factors contribute to perhaps half of the leading causes of death of 

Americans including cardiovascular disease, cancer and diabetes (1). There are 

inconsistencies linking diet with different types of cancer despite the fact that 

numerous studies suggest a significant role of diet (11-13). Plant-derived foods, 

often referred to as phytochemicals, may provide protection at several stages of the 

multifactorial grid multistage complex nature of colon cancer (14). Examples of 

components that have been recognized to have a protective effect against cancer in 

model systems include essential nutrients such as calcium, zinc, folate, vitamin C, D, 

and E, non-essential bioactive food components such as carotenoids, n-3 fatty 

acids, conjugated linoleic acid and isoflavones (8, 15). Modifying one or more of the 

cancer processes such as carcinogen metabolism, hormonal balance, cell signaling, 

cell-cycle control, apoptosis or angiogenesis may be the mode of action of these 

compounds (14). 

Legumes and beans are among the significant sources of protein in the 

traditional diets of many regions of the world (16). It is hard to imagine Asian 

cuisines without soy beans, lentils, black beans, chick peas, and pinto beans while 
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Western cuisines are based on animal protein and the associated animal fats. In 

addition to being a good source of dietary fiber (soluble and insoluble), these foods 

have been associated with decreased CRC risk (12, 17). Plant-derived foods are 

also good source of phytochemicals. 

With the general consensus that diets high in red meat and the associated 

saturated fat arse strongly correlated with increased colon cancer risk, substituting 

soy protein for red meat may decrease CRC (4, 16, 18). Soy is a common dietary 

component in Asian diets. Soy protein is considered a high quality protein for 

humans and is equivalent to milk protein based on the FDA protein digestibility 

corrected amino acid score method (19). With the versatility of soy to be processed 

in various ways along with the recent approval by the FDA for a health claim on soy 

based foods to reduce cardiovascular disease risk; the consumption of soy has 

increased substantially in the United States (20). 

Soy protein 

Soy foodls and soybean components have received considerable attention for 

their potential to reduce cancer risk. Numerous studies have focused on soy intake 

and risk of breast cancer (21-23). The relationship between soy intake and other 

cancers, including CRC also gained attention due to the several anti-carcinogenic 

bioactive compounds found in soy (16). Some of which include isoflavones, 

phytosterols, fatty acids, fiber, and protease inhibitor (trypsin inhibitor) (18). These 

biologically active components may contribute individually or synergistically to the 

health benefits associated with soy. 
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Figure 1.1. Structure of isoflavones (phytoestrogens) and the endogenous 

estrogens (estradiol and estrone) 
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Isoflavones (IF) such as genistein and daidzein, are found in high 

concentration in soy. Due to their structural similarity to estradiol (Figure.1.1) and/or 

their biological activity these compounds are often referred to as phytoestrogens (16, 

24). These plant-derived compounds have inherent estrogenic activity (25) or may 

be converted to estrogenic compounds by bacteria in the intestines (26, 27). Most 

often the muco~al or the bacterial R-glucosidases cleave the glucose moiety of the 

glucosides which are then absorbed and glucoronidated. Further metabolism of 

daidzin results in equol, an active metabolite that has more potent estrogenic activity 

than the parent compound. Genistein is metabolized to p-ethylphenol and 4-

hydroxypheny-2-propionic acid (27). Isoflavones also possess other potentially 

important biological attributes in addition to their ability to bind to the estrogen 

receptor. Some of the cancer-related properties associated with genistein include 

its anti-oxidant activity, anti-promotional effect (28), inhibition of tyrosine kinase (29), 

aromatase (30) DNA topoisomerase (31), inhibition of cell cycle progression and 

growth (32), and inhibition of angiogenesis in endothelial cells (28, 29, 32, 33). 

Results from studies on the effect of soy and soy isoflavones in CRC using 

animal models are inconsistent. Table 1.1 summarizes the conflicting results 

obtained with soy or the isoflavones in Aberrant crypt foci (ACF) formation and colon 

tumorigenesis. Thiagarajan et al (34) reported 50% reduction in ACF in male rats 

fed soy concentrate with genistein (167 mg/kg of diet) that were administered 2 AOM 

injections at 15 mg/kg of body weight. However, this report was contradicted by Gee 

et al (35) who used dimethylhydrazine (DMH) to induce ACF in male Wistar rats. 

They reported a 3-fold increase in ACF in rats fed casein-based genistein diet. 
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There are several differences between these studies that may provide explanation 

for these opposing results. Some of which include the use of casein based pure 

genistein diet by Gee et al (35) against the soy concentrate based genistein diet by 

Thiagarajan et al (34), use of different carcinogens to induce ACF such as DMH vs. 

AOM, the duration of the study (i.e., 6 weeks after carcinogen treatment vs 12 week 

after AOM) and dietary treatment before, during and after carcinogen treatment are 

some of the possible confounders. However, most of the long term studies on tumor 

incidence have indicated protective or no effect of soy or soy isoflavones. 

Previously we observed that oral administration of estrone with soy protein 

decreased tumor incidence, but not burden (tumor weight) or multiplicity in wild type 

and ERaKO mice (36). Though the effect of genistein was not statistically 

significant, this study showed that genistein reduced tumorigenesis in wild type as 

well as ERaKO mice. Similar results were reported in ovariectomized APCmin mice 

(31). Administration of estradiol/genistein reduced the tumor incidence in these 

mice. Also, a 20% reduction in tumor incidence in male rats fed soy protein isolate 

with 276 mg/kg of body weight compared to casein control was reported by Hakkak 

et al (37). However, Rao et al reported enhancement of noninvasive 

adenocarcinoma in rats fed casein based diets with genistein compared to controls. 

They also observed no effect of genistein on colon adenocarcinoma incidence or on 

the multiplicity of invasive adenocarcinoma (38). The contradictory result could be 

due to the use of casein based diets over soy protein based diets used by us. 
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Human epidemiological studies also provide contradictory evidence as to the 

role of soy in CRC risk. A 12-month intervention trial reported a decrease in colon 

epithelial cell proliferation with soy supplementation compared to casein group (39). 

A meta-analyses of epidemiological studies associating soy intake with CRC risk 

indicated a reduction in mean overall risk of colon cancer (40) (16, 18). In a study 

conducted of the US population with 50% Caucasians as subjects, an inverse 

association between high intake of carotenoid vegetables, garlic, or tofu (fermented 

soybean product) with polyps was reported. However, a 12-month randomized 

intervention study on men and women recently diagnosed with adenomatous 

polyposis reported no decrease in colon epithelial cell proliferation when 

supplemented with soy protein powder containing different amounts of isoflavones 

(41). The study participants were supplemented with 58 g of soy protein containing 

83 mg of isoflavones/day (45.6 mg of genistein, 31.7 mg of daidzein and 5.5 mg of 

glycitenin in aglycone units) or ethanol extracted soy protein powder containing 3 mg 

of total isoflavones. They reported no decrease in colorectal epithelial cell 

proliferation with soy protein supplementation but an increase in cell proliferation 

measures in thE~ sigmoid colon. Moreover, Nagata et al (42) showed a significant 

positive correlation between CRC mortality rates and soy food intake after correcting 

for age, smoking, alcohol and animal fat intake in the Japanese population (42). 

With these conflicting results on the effect of soy on CRC, some showing a 

protective effect while others a negative effect more studies on the role of soy in 

CRC are needed 



www.manaraa.com

10 

Role of estrogen in CRC 

The importance of estrogen in homeostatic regulation of many cellular and 

biochemical events is well established with the various pathophysiologic changes 

that occur with estrogen deficiency (24). Fraumeni et al (43) reported a high 

incidence of CRC among nuns along with high incidence of other hormone-

associated cancers including breast, uterus and ovary. Although, there is little 

overall gender difference in the risk of colon cancer, there is a variation in the age-

specific colon cancer gender ratio especially in the age groups of 35-54 and above 

54 among men and women. Men had higher risk below 35 years of age while the 

risk was higher in females between 35-54 years of age. After 54 years of age the 

male risk again becomes higher (3). McMichael and Potter et al (3) observed a 

transient decline in female colon cancer risk ratio among 35-54 and 55-74 year olds 

in the 1960's and early 1970's. Peak age-specific fertility and exposure to high-dose 

of oral contraceptives during 1960's were suggested to be possible reason for this 

transient decline in women indicating the direct influence of endogenous/exogenous 

estrogen in colon cancer. Several case-controlled studies and cohort-studies 

examining the associations between reproductive events, menstrual factors, 

exogenous hormones and CRC stratified by age at diagnosis, tumor site, family 

history and other potential risk factors also indicated the role of female sex 

hormones on colon cancer (44, 45). In ameta-analysis of 18 epidemiologic studies 

on postmenopausal HRT and CRC Grodstein et al (46) found a 20% reduction in the 

risk of colon cancer and a 19% decrease in the risk of rectal cancer for 

postmenopausal women on hormone therapy compared to women who never used 

hormones (46). The role of estrogen in decreasing CRC was further reiterated with 
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the outcome of the Women's Health Initiative trial. Two parallel randomized 

controlled clinical trials, one with conjugated equine estrogen (CEE) alone and the 

other with CEE in combination with progestin (medroxyprogesterone acetate (MPA)) 

were undertaken to determine the effect of HRT in reducing cardio- vascular risks 

(47). The arm with CEE with progestin was halted in July, 2002 as the health risks 

of this treatment exceeded its benefits (47, 48). The primary adverse outcome 

included invasive breast cancer along with coronary heart disease. However, the 

incidences of GRC in women using CEE + progestin were lower than nonusers. 

Thus, suggesting a protective effect of HRT in CRC (47, 49). However, women in 

the HRT group who developed CRC had a greater number of positive lymph nodes 

suggesting a more advanced invasive type of CRC with HRT. The reason for this is 

not known, and demonstrates the need for more study of the role of estrogen in 

CRC. 

Estrogen receptors 

Estrogen mediates temporal and tissue-specific actions via estrogen 

receptors (ER) a and ~3. The ER receptors are members of the nuclear receptor 

superFamily of transcription factors that include thyroid receptor, vitamin D receptor, 

retinoic acid receptor, and other steroid receptors such as the glucocorticoid, 

mineralocorticoid, androgen and progesterone receptor. ERa was the first estrogen 

receptor that was isolated from MCF-7 human breast cancer cells followed by the 

ER~3 from rat prostate using degenerate PCR primers (50). ERa and ERR are 

localized in the breast, brain, cardiovascular system, urogenital tract and bone (50-
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52). ERa is the main subtype in the liver, while ERR is the main ER in the colon 

(50). 

Ligands such as estrogen (estradiol) binding modulate the transcription of 

target genes. Activity of the transcription factors is regulated by a variety of factors, 

including phosphorylation, corregulators, and the effector pathway in addition to 

ligand binding. The end result of the target genes is to modulate physiological 

processes, such as reproductive organ development and function, bone density as 

well as the growth and development of breast and endometrial cancer. These 

biological effects are mediated via communication between many proteins and 

signaling pathways (50). The susceptibility of a tissue to estrogen-induced 

carcinogenesis might be determined by the ratio of ERa:ER~3 (53). Phytoestrogens 

such as genistein have a greater affinity for ER~3 compared to ERa by 20-fold, but 

activates transcription through both receptors (50). 

Location of Estrogen receptors in colon 

ERa and ER~3 may also localize to distinct cellular subtypes within each tissue 

(50). Waliszewski et al (54) reported the location of ER to be in the stromal cells 

rather than in the colon epithelial cells and in situ hybridization studies also indicated 

the presence of ER in stromal cells above the muscularis mucosa (55). However, 

Xie et al (56) reported the presence of ER throughout the colon mucosa by 

immunohistochemistry. Controversy remains over the location of these receptors in 

the stroma rather than in colon epithelial cells and their role in colon cancer. But, a 

consistent finding is that normal human colon expressed more ER~3 than ERa mRNA 

and expression of ERR is low or selectively lost in human colon tumor cells. (53, 57) 
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Estrogen synthesis in colonic epithelium 

Estrogen can be synthesized locally with tissue specificity. The precursor for 

estrogen is cholesterol which is converted to pregnenolone and 17-

hydroxypregnenolone. Dehydroepiandrosterone (DHEA) derived from 17-

hydroxypregneu~olone is converted to androstenedione or androstenediol. 

Conversion of androstenedione into testosterone is governed by the enzyme 17R-

hydroxysteroid dehydrogenase (17RHSD). The enzyme complex aromatase, 

cytochrome P450 a~om transforms these androgens into estrogens (58). Conversion 

of estradiol (E2) to estrone (E1) or the reverse facilitated by 17R-HSD depends on its 

oxidative or reductive activity (58-60). There are at least nine different isoforms of 

17~3HSD whose activity differs with in tissues accounting for the differences in the 

varying concentrations of these steroids in different cells (61). It is speculated that 

the peripheral synthesis of estrogens may play a role in the non-receptor mediated 

effect of estrogen in the pathophysiology of cell growth (59, 61). The role of estrone 

and estradiol in colon cancer cells is not well defined. Oduwole et al (61) reported 

that 17(3-HSD type 2 (estradiol to estrone) was the dominant form in human colon 

and was downr~egulated in colorectal tumors with no expression of the 173-HSD type 

1 enzyme (estrone to estradiol). However, they also reported that females with CRC 

that had higher 173-HSD 2 mRNA expression had a poor survival rate thus 

suggesting a low expression of the 17R-HSD type 2 as an independent marker of 

good prognosis in females with distal colorectal cancer (62). This was contradicted 

by English et al (59) who reported conversion of estradiol to estrone as protective 

against colon cancer and loss of estrogen inactivation (i.e., conversion of active 

estradiol to estrone and 17-HSD type 2 enzyme) results in colon tumors. These 
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results suggest a reciprocal role of active and inactive estrogens (estradiol and 

estrone) in the etiology of colon cancer 

Both endogenous and exogenous sex hormones have been associated with 

cancer etiology. High levels of biologically active androgens or estrogens are 

associated withu increased risks of prostate cancer in men and ovarian and breast 

cancer in women (63-65). Despite the positive association of endogenous and 

exogenous estrogens with these cancers, plant estrogens are inversely associated 

with cancer (66, 67). The association of phytoestrogens with decreased cancer 

incidence implies a lack of estrogenicity or estrogen antagonism or differential 

cellular mechanisms. The growth effect of estradiol (1 and 10nM) to genistein and 

tamoxifen was compared on cellular proliferation in human colon cancer cell lines 

(HT-29, Co1o320, Lovo and SW480 cells) and MCF-7 cells (67). Even at higher 

concentrations (100 and 500nM) the colon cancer cells were not responsive to 

estradiol while growth was stimulated in MCF-7 cells. However, at 10~M 

concentrations of genistein at which growth is stimulated in ERa positive human 

breast cancer MCF-7 cells there was a slight inhibition in growth of HT-29, Co1o320 

and Lovo colon cancer cells. Also, they reported the presence of ERR in these cells 

with no ERa. Different biological effects of the phytoestrogens and endogenous 

estrogens as will as the differences in ratio of ERa and ER~3 can be accounted for 

the differential effects of these compounds tissue specifically. 

Types of cancer 

Inherited or acquired mutations in the adenomatous polyposis coli (APC) gene or 

mismatch repair genes (MMR) have been associated with colon carcinogenesis (68). 
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Hereditary forms of colon cancer include familial adenomatous polyposis (FAP) and 

hereditary nonpolyposis colorectal cancer (HNPCC) (4, 69). The progression from 

adenomatous polyps characterized by benign neoplasms arising from glandular-type 

cells occurs via a multistage carcinogenesis pathway (68, 70). FAP is an autosomal, 

dominant inherited syndrome that affects about 1 in 7000 individuals and is caused 

by an inherited mutation in the adenomatous polyposis coli (APC) gene (70). The 

mutations can arise at different sites within APC, that invariably lead to stop codons 

and thus a truncated APC protein (4, 68). Hypermethylation of APC can also cause 

truncation of the APC protein (71). Genetic polymorphisms with a nontruncating 

APC have also been described (4). Although, FAP patients have more adenomas 

they do not necessarily turn into carcinomas. The common and early somatic event 

in polyps and cancer include mutations at the APC locus which could be due to a 

first germline hit or a somatic event. Other mutations in the transforming growth 

factor R receptor, k-ras oncogene and p53 tumor suppressor genes have also been 

described (72, 73). The predisposition to multiple primary cancers such as 

endometrial, ovarian, gastric, and urinary tract without intestinal polyposis along with 

microsatellite instability (MIN) is the hallmark of HNPCC. The silencing of APC or 

MMR genes leads to hereditary forms of cancer. HNPCC, another inherited 

autosomal dominant syndrome accounts for about 2% of CRC cases where the 

mismatch repair (MMR) genes are mutated but patients do not necessarily have 

polyps or adenomas. 

Sporadic colorectal cancer: CRC arising from nongenetic origins are called 

sporadic cancer. The lifetime risk of CRC is around 5% with about 50°/o of the 

Western population developing adenoma by the age of 70 (2). The etiology is a 
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cumulative mutational activation of oncogenes coupled with inactivation of tumor-

suppressor genes, and genetic alteration in a preferred sequence leading to 

malignant tumors (68, 74). In most cases the initiation of sporadic cancers occurs 

due to environmental factors, therefore this type of cancer has the greatest potential 

for dietary prevention. 

CRC results from the progressive accumulation of genetic and epigenetic 

alterations that transform the normal colonic epithelium to colon adenocarcinoma. 

The basic teneis concerning the pathogenesis of sporadic CRC include changes at 

the molecular and morphologic levels leading to progression, the clonal growth 

advantage of the transformed cells arising from genetic and epigenetic alterations, 

and loss of genomic instability (73). Mutations in the APC gene that leads to 

truncation of the APC protein is often the initial event in tumorigenesis which results 

due to loss of heterozygosity (loss of both alleles of APC). Genetic and epigenetic 

changes of the normal epithelial cells trigger a sequence of events leading to 

adenoma-carcinoma formation. Figure 1.2. depicts the sequence of events leading 

to carcinoma and eventually to metastasis. Genetic mutations such as k-ras, 

SMAD4 and other alterations in addition to APC and R-catenin mutations that result 

in dysregulatior~ of the wnt signaling pathway are also involved in tumorigenesis 

(73). Cyclooxgygenase-2 (COX) protein levels as well as activity are also elevated 

in the early stages of colorectal carcinogenesis. 
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Figure 1.2. Genetic model of colorectal carcinogenesis 
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Animal models in colorectal cancer 

The present understanding of the genetic, molecular and histopathological 

events that are perceived to occur during colon carcinogenesis has been possible 

due to the use cif animal models. These models are also extremely valuable in 

developing strategies for chemoprevention due to their similarity in mimicking the 

neoplastic processes that occur in humans. The models that have been widely used 

in deducing the events and mechanisms associated with colon carcinogenesis 

include chemical carcinogen-induced animal models such as azoxymethane (AOM) 

or dimethylhydrazine (DMH), transgenic models, and immuno-incompetent mice 

xenografted with cancer cells (75). The multiple intestinal neoplasia (Min) mice, with 

a mutation in the APC gene are also widely used. Variations in this model include 

the APC°716 knock out mice introduced by Oshima et al (76). Although, this model is 

similar to FAP in humans, multiple neoplasia develop in the small intestine of these 

mice in contrast to adenomas detected exclusively in the colon and duodenum of 

humans (77). Although, the APCmin mice have 40-60% APC mutations, 

adenocarcinomas or p53 inactivation are rarely observed. The occurrence of the 

polyps in the small intestine rather than the colon is a major drawback in these 

mutant models in addition to the cost in generating these mice (78). 

Aromatic amines, derivates and analogues of cycacin such as 

methylazoxymethanol (MAM), 1,2,-dimethylhydrazine (DMH) and Azoxymethane 

(AOM), as well as direct-acting carcinogens such as methynitrosourea (MNU), and 

heterocyclic amines are some of the chemicals used to induce colon tumors. AOM 

is widely used key many investigators to induce tumors in mice. CYP2E1 belonging 

to the CYP-450 enzyme family metabolizes AOM to methyazoxymethanol (MAM) by 
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hydroxylation of methyl groups. Oxidation of MAM to methylazoxyformaldehyde 

yields methyldiazoniumion which forms DNA adducts (79). The morphology, 

histochemical properties and the biological behavior of these AOM-induced colon 

carcinomas are similar to human colon carcinomas. Other similarities with AOM-

induced colon carcinomas to humans which make it a good chemically induced 

colon carcinogE;nesis model include predominant colon tumors in the distal colon, 

oncogenic mutations at codon 12 of K-ras and H-ras, enhanced cyclooxygenase-2 

and iNOS, microsatellite instability, and some APC mutations (15%) (77). Also, AOM 

is more potent, less expensive and more convenient to use compared to other 

chemicals that are used to induce tumors in animal models. 

Aberrant crypt foci 

Exposure of normal cells to chemical or viral agents results in initiation of the 

carcinogenic process (80). The clonal expansion resulting in altered morphology 

and phenotype of these initiated cells leads to promotion. Further changes in the 

genotype leads to malignancy and metastasis, often defined as the stage of 

progression. Colonocytes act as a barrier against exogenous carcinogenic 

substances. However the biotransformation or the activation/detoxification of the 

exogenous chemicals may lead to preneoplastic or precancerous lesions in the 

colon and rectum called aberrant crypt foci (ACF). ACF were initially identified in the 

colonic mucosa of rodents exposed to colorectal carcinogens and later in human 

colon (80, 81). 

ACF are defined as single or multiple crypts with 1) altered luminal openings 

2) that exhibit thickened epithelia; and 3) are larger than adjacent normal crypts (82). 
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ACF are thus regarded as preneoplastic or precancerous lesions in the large bowel 

of man as well as rodents (83). According to Bird et al the scheme of events starts 

with ACF that selectively go through the multistep process leading to the formation 

of microadenor~as which selectively undergo genetic and other changes to develop 

into adenocarcinomas and carcinomas subsequently (80, 84). ACF can be stratified 

into two broad classes, hyperplastic and dysplastic based on morphology and 

biological behavior. It has been suggested that larger dysplastic ACF are more 

preneoplastic than hyperplastic ACF and are more correlated to tumors (85). ACF 

display a marked biological heterogeneity with respect to genotypic and phenotypic 

features. With increasing time and exposure a higher number of ACF exhibit 

dysplasia and increasing crypt multiplicity. Although, the true neoplastic potential of 

ACF needs to be determined, some of these dysplastic ACF progress into the 

adenoma- carcinoma sequence. Many studies have reported a lack of correlation 

between number of ACF and tumorigenesis (86, 87). Also different 

chemopreventive agents have differential effects. Cholic acid inhibited ACF in rats 

on a short term but increased tumor incidence indicating a lack of correlation with 

ACF and tumors (87). Different initiating or promoting carcinogens such as AOM 

and DMH, time of exposure to carcinogen and the dietary treatments influence the 

number of ACF. Furthermore, ACF that are mucin-depleted and have R-catenin 

accumulation aye more correlated with tumors (88-90). Thus, ACF, although not 

fully committed to neoplasia are preliminary markers of preneoplasia that are easily 

identifiable and hence have been used by many investigators as a short-term marker 

for evaluating chemopreventive compounds against carcinogenesis. 
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Colorectal car~cer and Nonsteroidal anti-inflammatory drugs (NSAIDs) 

The best understood example of NSAID therapy in oncology involves colon 

cancer where multiple lines of evidence, animal and cell culture experiments, 

therapeutic trials and epidemiological studies, all reinforce the conclusion that 

NSAIDs block colon carcinogenesis at an early step (91-96). Epidemiological 

studies indicate a consistent reduced risk of CRC with intake of nonsteroidal anti-

inflammatorydrugs (NSAIDs), including aspirin, by up to 50%(91, 92). Clinical trials 

also demonstrated that sulindac, one of the NSAIDs, caused regression of colorectal 

adenomas in patients with familial adenomatous polyposis (FAP) (97, 98). The well-

supported chemopreventive mechanism of NSAIDs is their inhibition of 

cyclooxygenase (COX) enzymes in the arachidonic acid (AA) cascade. COX-1 and 

COX-2 are the established pharmacological targets of NSAIDs (4, 91, 92, 94, 98, 

99). The pharmacology of NSAIDs and the roles of COX-1 and COX-2 are now 

integrated into a model suggesting that COX-1 synthesizes the housekeeping 

prostaglandins (PG) that protect the stomach lining from ulcers, regulate renal blood 

flow while COX-2, produces PGs that are associated with pain, inflammation and 

fever (94, 98-101) indicating the role of chronic inflammation in carcinogenesis. In 

general, COX-2 is not constitutively expressed in appreciable amounts by most 

normal tissues, but certain inflammatory cytokines, tumor promoters, growth factors 

and oncogenes induce COX-2 (100, 102). 
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Figure 1.3. Arachidonic acid cascade and generation of prostaglandins by COX 
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Arachidonic acid (AA) is the major prostanoid precursor. The biosynthesis of 

prostanoids involves athree-step sequence of stimulus-initiated hydrolysis of 

arachidonate from glycerophospholipids involving secretory, cytoplasmic or both 

types of phospholipase A2 (sPLA2, cPLA2); oxygenation of arachidonate yielding 

cyclic endoperc►xide prostaglandins (PGG) and cyclization catalyzed by the 

endoperoxide synthase component of COX isoenzymes, to yield Prostaglandin H2

and conversion of PGH2 to the most biologically active end products such as PGD2, 

PGEZ, PGF2a, PGIZ (prostacyclin) and TXA2 (thromboxane A2) via specific syntheses 

(Figure 1.3). 

Role of prostaglandins and COX in tumorigenesis 

Certain prostaglandins especially derived by the action of COX-2 isoenzyme 

have been suggested to aid in carcinogenesis by altering normal cellular processes 

like cell proliferation by increasing polyamines and DNA synthesis via ornithine 

decarboxylase <~ctivity, angiogenesis, inhibiting apoptosis, immunomodulation and 

carcinogen metabolism (103). The NSAIDs such as aspirin, indomethacin, sulindac, 

ibuprofen all inhibit both isoforms of COX nonselectively. In vitro and in vivo studies 

indicated different mechanisms of COX inhibition by these classes of drugs. Aspirin 

inhibits the CO~C but not peroxidase activities of both COX-1 and COX-2 by 

acetylating a particular serine thereby blocking the channel leading to the active site 

resulting in irreversible inhibition of PG synthesis. Indomethacin induces an 

inhibitory conformational change by forming a tight, slowly dissociable complex while 

Ibuprofen and piroxicam are competitive inhibitors. In general most of these NSAIDs 

are better inhibitors of COX-1 than COX-2 (103). Although, marked reduced risk of 
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developing colon cancer and its nonmalignant precursor, the adenomatous polyp in 

FAP with NSAIIDs was evidenced, the benefits have not been as obvious in sporadic 

colon cancer as in familial colon cancer (102). Moreover, their prolonged use has 

adverse effects such as nausea, dyspepsia, gastritis, abdominal pain, peptic 

ulceration, gastrointestinal bleeding, and/or perforation of gastroduodenal ulcers and 

nephrotoxicity (98). 

Following the discovery of the COX-2 isoform and with the evidence 

indicating a positive relationship between COX-2 expression and CRC, novel COX-2 

selective inhibitors such as rofecoxib and celecoxib were developed (96, 104-106). 

These were less likely to have the side-effects associated with the general NSAIDs 

including gastrointestinal mucosal defense interference. Evidence from genetic 

studies also demonstrated that deletion of the COX-2 gene resulted in decreased 

tumor formation both in the small intestine and colon of APC mutant models (76). 

This assessment of the role of COX-2 in colorectal tumorigenesis in animal models 

involving knockout mice led to further testing on animal models that suggested a 

regression leading to safer use and prescription of COX-2 inhibitors for FAP patients 

(107-109). Nurnerous studies suggest an initiating event such as a mutation of a 

gatekeeper gene such as APC results in the induction of inflammatory COX-2 while 

COX-1 levels remain the same in normal as well as the tumor tissue (109). 

Although, the reduced gastrointestinal toxicity of COX-2 selective inhibitors favors 

their use, they too have unfavorable side-effects. Rofecoxib, a selective COX-2 

inhibitor has been shown to increase cardiovascular morbidity in some persons and 

was recently taken off the market (110-112) 



www.manaraa.com

25 

Modulation of COX-2 by estrogen 

COX-2 is induced by inflammatory cytokines, interleukins and 

lipopolysacchar~ides (LPS). There is limited but growing evidence that estrogen may 

influence COX-2 induction. In ovariectomized female rats Ospina et al (113) 

reported the suppression of interleukin (IL-1 R)-mediated induction of the COX-2 

pathway in rat cerebral blood vessels with estradiol treatment. Also, systemic IL-1~3 

induced an NF-xB dependent induction of COX-2 in untreated rats that was blocked 

by estradiol by ,~n ER-dependent mechanism (113). A two-fold increase in COX-2 

mRNA in human uterine microvascular endothelial cells by estradiol was observed 

by Tamura et al (114). Mutoh et al using a R-galactidase reporter gene system 

measured COX-2 promoter-dependent transcriptional activity in human colon cancer 

DLD-1 cells with treatment of genistein and other chemopreventive compounds 

(115) . They observed a suppression of the COX-2 promoter activity with genistein 

and attributed it to the resorcin moiety that is similar to the endogenous estrogen. 

These observations suggest the modulation of COX-2 pathway by estrogens. 

Hypothesis 

The basics concept of cancer prevention involves the regression, inhibition or 

elimination of precancerous lesions leading to reduced cancer incidence. Based on 

our previous findings that clearly showed the effect of dietary estrogens in 

decreasing tumor incidence in AOM-treated mice (36) we wanted to dissect the 

pathways through which estrogen might have an influence in CRC. Numerous 

studies reported decreased colon cancer incidence with NSAIDs and COX-2 specific 

inhibitors (91, 1()7, 115, 116). There is evidence with regard to estrogen modulating 
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COX-2 in cerebral blood vessels and uterine tissues from in vitro studies (113, 114). 

There is also evidence indicating that genistein and other chemopreventive 

compounds that have the resorcin motiety in their structure suppressed COX-2 

promoter-depended transcriptional activity in colon cancer cells (115). An increase in 

COX-2 levels is one of the early events in CRC. Hence, we hypothesized that 

dietary estrogens, could reduce CRC risk via inhibition of COX-2. Furthermore, 

these compounds would reduce the formation of ACF, which are morphologically 

determinable lesions that occur during the initiation-promotion stage in the scheme 

of events associated with the multistage carcinogenesis model. We used the AOM-

induced mouse model in which we previously found a positive protective effect of 

estrone. 
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CHAPTER 2 

EXPERIMENTAL DESIGN 

Animal care 

Thirty four 3-week old ovariectomized C57BL/J56 mice purchased from 

Charles River, (Portage, MI were maintained at the animal care facility, located in the 

Human Nutritional Sciences Building in a 25°C, humidity controlled, 12-hour dark-

light cycle environment. Animals were housed 4 to a cage in shoe box plastic 

cages. Mice were acclimated with casein control diet for three days (Table 2.1). At 

4 weeks of age the mice were randomized to the experimental diets with n=7-9 per 

group. All mice were injected intraperitoneally with azoxymethane, at 10 mg/kg of 

body weight once per week for 6 weeks (Figure 2.1). The AOM was administered at 

the same time of day and day of the week. The dose of AOM administration was 

arrived at based on the tolerability of the animals from previous studies and 

effectiveness of the dose (117, 118). Tap water and feed were provided ad libidum. 

Animals were v~reighed weekly and body weights recorded. 

Preparation of Azoxymethane 

Azoxymethane (AOM) was purchased from Sigma-Aldrich, St. Louis, MO. 

The solutions were prepared by careful handling in a fume hood. Twenty five 

milligrams of AOM suspension was mixed in 10 ml of distilled water and aliquots of 2 

ml with a final concentration of 2.5 mg/ml were stored in sealed septum bottles in the 

-20°C freezer. ~On the day of carcinogen injections the dose amount was calculated 

depending on the weight of the mouse with a final dose of 10 mg/kg of body weight 
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Figure 2.1. Experimental design 
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Table. 2.1. Composition of experimental diets (AIN93 based) 

Diet Casein Soy-IF Soy+Gen Soy+E1 
g m/kg g m/kg g m/kg g m/kg 

Corn starch 393 396 396 393 
Cellulose BW2002 38 50 49 38 
Phytic acid 15 0 0 0 
Dyetrose3 132 132 132 132 
Sucrose 100 100 100 100 
Casein2 200 0 0 0 
Soy protein w/o I F4 0 200 200 200 
Vitamin mix — AI N 93G2 10 10 10 10 
Salt mix — AI N932 35 35 35 35 
D-L Methionine2 4 4 4 4 
Choline bitartrate2 2.5 2.5 2.5 2.5 
Corn oily 50 50 50 50 
Safflower oil2 20 20 20 20 
Genistein5 0 0 0.25 0 
Estrone 6 0 0 0 0.2* 

* Made with a premix containing 125mg estrone in 250 gm of corn starch (dose of estrone is 
0.093 mg Estrone/kg of diet). Estimated energy content 4.84 kcal/gm of diet 

~ General Stores, 
2 ICN Biomedicals, Inc. (Aurora, OH) 
3 Dyets Inc., Bethlehem, PA 4 Archer Daniels Midland Inc. (Decatur, I L) 
5 LC Laboratories, Woburn, MA 
6 Sigma-Aldrich, St. Louis, MO 

Diets were prepared in house and pelleted by extrusion at the University of Missouri-
Columbia, MO (Dr. Fu-Hung Hsieh). The diets were color-coded using color laks 
purchased from Monarch Food Colors, High Ridge, MO. 
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per mouse. The azoxymethane was administered via intra peritoneal injections 

using a 1 ml syringe and a 27.5 gauge needle. 

Tissue collections 

Mice were anesthetized with Nembutal (50 mg/ml with a dose of 3 mg per 

mouse) between 0800 and 1300 hrs, 6 weeks after the last AOM injection. Amid 

lateral incision was made and the thoracic cavity opened and heart exposed. Blood 

was then collected by cardiac puncture using heparinized (0.01 %heparin) syringes 

and placed in 1.5m1 tubes on ice until centrifuged. Serum was collected after 

centrifugation a~t 14,000 rpm for 7 min and stored in -80°C. Abdominal fat and 

organs including heart, lung, kidney, spleen, cecum and colon were removed and 

weighed. The colon was flushed twice with 1Xrnouse-tonicity phosphate buffered 

saline (MTPBS, 15.7 mM Na2HPO4, 4.5 mM NaH2PO4, 0.15 M NaCI) (119, 120) 

using 18-gauge, bulb-tipped gavage needles. The colon was divided into 2 sections. 

The distal 2 cm section of the colon was sandwiched between 2 microscope slides 

bound by a rubk~er band and fixed in 10% neutral-buffered formalin overnight. The 

remaining part of the colon was scraped using a microscope slide and the 

colonocytes collected in 5X volume lysis buffer (150mM NaCI, 50mM HEPES and 

1%protease inhibitor mix (that had protease inhibitors to inhibit serine, cysteine, and 

calpain proteases), (Amersham Biosciences, Buckinghamshire, UK) snap frozen in 

liquid nitrogen and stored at -80°C until further analysis by Western immunoblot. 
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Aberrant crypt foci staining procedure 

The overnight formalin-fixed microscope slides were carefully split apart such 

that the fixed tissue was on the lower slide with the crypts facing up, excess formalin 

was drained with a Kim wipe and the tissue was immersed in (0.2% methylene blue 

stain in distilled water) (82) for 10 min. After rinsing 3X with phosphate buffered 

saline (PBS, 1mM Potassium phosphate monobasic, 0.15M sodium chloride, 5.6mM 

sodium phosphate dibasic anhydrous) for 5 min, cover slips were carefully placed 

on the slides ar~d the crypts were visualized under a light microscope at 10X 

magnification. 

The colon section was outlined on the cover slip using afine-tip marker and 

the aberrant cr\/pts were marked on the cover slip using the marker by two 

independent observers. Aberrant crypts were distinguished from adjacent normal 

crypts by their altered lumina) opening that had thickened epithelia. Some of them 

were elongated) and were distinguishable from the remaining adjacent normal crypts. 

Protein quantification and Western Immunoblotting 

Frozen c;oloncytes were sonicated in short bursts 3X 15 sec apart (Heat 

Systems W-380 sonicator), centrifuged at 120,OOOXg for 30 min at 4°C 

(lJltracentrifuge, Beckman L8-M, Rotor number Ti 50.3) and supernatants collected. 

Protein concentrations of the supernatants were determined using a bicinchoninic 

acid (BCA) kit for protein determination (Sigma, St. Louis, MO). 

Procedure for BCA protein assay: The BCA reagent was prepared by mixing 50 

parts of bicinchoninic acid solution to 1 part of the copper sulfate solution. 

Triplicates of the sample supernatant (dilution factor 10, i.e., 1:10 1 pl of lysate with 9 
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pl of water), Bovine serum albumin (serial dilution of 0.25, 0.5, 1, 1.5 and 2 mg/ml), 

dH2O and the lysis buffer were loaded onto 96-well plate to which 200p1 of the BCA 

reagent was added. The plate was incubated at 37°C for 30 min. The absorbance 

of each well was read at 562nm using the microplate reader. The absorbance 

values were coi~npared to the standard curve to determine the protein concentration. 

Western immunoblot procedure 

Gels were cast on previous day of run using BioRad Mini-Protean 3 cell system (Bio-

Rad, Hercules, CA). The first 4 solutions (Table 2.2) were mixed and degassed for 

15 min. The cress linking agents were added immediately before transfer into the 

gel apparatus. A layer of water was placed over the separating gel until it was set. 

The water was wiped off with a Kim wipe and the stacking gel layered on top. A 

comb was inserted into the gel and allowed to set. The wells were rinsed with water 

prior to sample loading. From the determined concentrations of the supernatant 

sample 5µg of protein was loaded per wells. The supernatant was mixed with 6X 

sample buffer (1.5M Tris-HCI, glycerol, sodium dodecylsulfate (SDS), dithiothreitol 

(DTT), bromophenol blue) to yield a total volume of 30µI and heated at 100 °C for 1 

min. The loading concentration of the supernatant was determined empirically. A 

COX-2 standard (positive control) (Sigma, St. Louis, MO) an internal control (a 

sample supernatant that was repeated in all the gels) and a molecular weight 

standard (Bio-Fad, Hercules, CA) were run on each gel. Proteins were separated 

by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) on 10% 

separating gel with a 4% stacking gel (Table 2.2) at 200 V until the dye 

(bromophenol hlue) ran off the bottom. 
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Table 2.2. Reagents used for casting the gel for western immunobiot 

FOR 2 MINIGELS (1.5mm thick) 10 %resolving 4% stacking 

30% Acrylamide/0.8% Bis solution 6ml 0.67 ml 

1.5M Tris, pH 8.82 5 ml - 

0.5M Tris pH 6.83 1.25 ml 

d H2O 8.10 m l 3.07 m l 

10% SDS~ 200u1 50 ul 
TEMED ~ (N, N, N, N —tetra-methyl-
eth lenediamine Y ) 20u1 5 ul 

10% Ammonium Persulphate2 100u1 25 ul 

1 Bio-Rad, Hercules, CA 

2 Fisher Scientific, Fairlawn, NJ 

Typically the gE~l ran for about 50 min to an hour. The gel was carefully removed 

from the glass plates and incubated in the transfer buffer (25 mM Tris, 192 mM 

glycine, 20% methanol) along with the filter pads, filter paper and nitrocellulose 

membrane (Tr~~ns-Blot transfer medium, Bio-Rad, Hercules, CA) for 30 min. The 

electrophoresis and transfer were carried out with PowerPacTM HC Power supply 

(Bio-Rad, Hercules, CA) and Bio-Rad Mini Trans-Blot system (Bio-Rad, Hercules, 

CA). The transfer was done for 90 min at 100 v constant voltages. The membranes 

were then incubated for 2 hr at room temperature on a rocker in a blocking buffer 

(1.5% non-fat dry milk and 1.5% Bovine serum albumin (BSA) in Tris Buffered Saline 
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(TBS) 0.5mM Tris base, 0.9% NaCI). The membrane was cut into 2 pieces based 

on molecular weight using the colored standards as a guide. The upper part of the 

membrane was incubated with mouse monoclonal anti-COX-2 antibody (1:10,000). 

The lower part was incubated in mouse monoclonal anti-(3-tubulin antibody 

(1:10,000) in block buffer overnight at 4° C on a rocker. Membranes were washed 4 

X 5 min with TESS and probed with goat anti-mouse IgG-HRP conjugate (COX-2 

1:50,000; R-tubulin 1:5000). Table 2.3 lists the antibodies and reagents used in 

these analyses. Target proteins were detected using Pierce West Femto Maximum 

Sensitivity substrate and quantified with a Bio-Rad GS-800 Densitometer using 

Quantity One software. ~3-tubulin served as the loading control. For each sample 

the density of COX-2 was normalized with the density of the corresponding R-tubulin 

and then a correction for intergel comparison was done using the internal sample 

control. To generate a correction factor the COX-2/~3-tubulin ratio for the internal 

sample control was determined for each gel then an average derived. This average 

was divided by the individual gel internal sample control ratio and used as the 

correction factor as follows 

Normalized C O►X-2 sample 

~CC)X-2 sample ~ 

R-tubulin 
Correction factor 

Statistical analysis using SAS (SAS Institute, Cary, NC) was performed on this 

normalized COX-2 value. We used Proc mixed procedure of SAS to do one way 

analysis of variance (1-way ANOVA) on normalized COX-2 value and the mean 

number of ACF per diet group. The organ weight data as percent of body weight 
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was analyzed using the General Linear Model (GLM) procedure. Differences among 

means were determined by the least square (LS) means component. Pair wise 

comparison usi~~g Tukey-Kramer was done. The body weight data was analyzed 

using the Proc mixed procedure while the last two week differences were done after 

Bonferroni adjustments. Main effect and interactions were considered significant at 

P<_ 0.05 for COX-2 protein density levels and number of ACF after Tukey-Kramer 

adjustments. Measurements were reported as mean ±SE. 
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Table 2.3. Antibodies and reagents used for COX-2 western immunoblot 

Catalog 
No. 

Source Dilutions Comments 

Molecular 161- Bio-Rad Kaleidoscope prestained standards 
weight 
marker 

0324 control 

Cox-2 std C-0858 Sigma Human, recombinant expressed in 
Sf21 cells 
Molecular weight of COX-2 72 kDa 

Primary ~~C- Santa 1:10,000 Mouse monoclonal IgG 200ug/ml 
Cox-2 
antibody 

19999 Cruz 
Biotech-
nology 
Inc. 

Secondary 
antibody 

SC-2005 Santa 
Cruz 

1:50,000 Goat anti-mouse igG-HRP 

Biotech-
nology 
Inc. 

Primary SC-5274 Santa 1:10,000 Mouse monoclonal 
antibody 
for ~- 
tubulin 

Cruz 
Biotech-
nology 

Molecular weight of ~-tubulin 55kDa 

Inc. 
West 
Femto 

34094 Pierce 1:1 Super signal West Femto maximum 
sensitivity substrate 

Substrate 
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ABSTRACT 

Epidemiological studies indicate a lesser incidence of colon cancer in 

populations that consume fruits, vegetables and vegetable proteins such as legumes 

over the western diets that are rich in animal protein and fats. Soy and associated 

bioactive substances such as the isoflavones have been associated with lower colon 

cancer risk. W~ previously found reduced colon tumor incidence in mice fed soy 

protein with estrone (E1). Several epidemiological studies indicate a 40-50% 

reduction in the risk of developing colorectal cancer with chronic non-steroidal anti- 

inflammatory drugs (NSAIDS) including aspirin that inhibit both isoforms of the 

cyclooxygenase (COX) enzyme COX-1 and COX-2. We hypothesized that dietary 

genistein, or estrone (E1) would reduce aberrant crypt foci (ACF), a purported 

preneoplastic marker, and COX-2 protein levels in mice colon. Ovariectomized 

female mice were fed diets containing casein (Casein), soy protein without 

isoflavones (Soy-IF), soy protein + genistein (Soy+Gen) or soy protein + estrone 

(Soy+E1) from 3 weeks of age. Beginning at 4 weeks of age, all animals received 

weekly injections of azoxymethane (AOM) 10mg/kg of body weight for 6 weeks and 

terminated 6 weeks after the last dose of AOM. Aberrant crypt foci were visualized 

under a light microscope and COX-2 protein levels were analyzed by Western 

immunoblot. COX-2 protein levels were affected by diet (P<_ 0.05) but aberrant crypt 

foci incidence was not (P<_ 0.05). COX-2 levels were lower in mice fed Soy+E1 and 

Soy+Gen compared with mice fed the casein or Soy-IF. Thus, we conclude that soy 

protein with genistein ad soy protein with estrone downregulate COX-2 levels and 

may thereby reduce colon cancer risk. 
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INTRODUCTION 

Cancer accounts for approximately 23% of all deaths in the United States, 

ranking second only to heart disease. Colon cancer is the third most commonly 

diagnosed cancer among men and women (1, 2). In 2005 estimated new cases of 

colon cancer were 48,290 for men and 56,660 for women (1, 2). Colon cancer risk 

is influenced by various environmental factors such as exposure to chemicals, 

radiation, smoking, oxidative damage, and other lifestyle factors such as physical 

activity, and alcohol intake (3). Epidemiological data suggest that diet plays a major 

role in the etiology of colon cancer (4, 5). The World Cancer Research Fund and the 

American Institute of Cancer Research after an extensive review of literature 

concluded that colon cancer risk was reduced with vegetable intake, and physical 

activity while consumption of red meat (probably the associated saturated fat) and 

alcohol increased the risk (6). COlon cancer incidence rates among populations 

differ greatly with the lowest incidence in the Asian population (2, 7, 8). However, 

the incidence rates of colon cancer among the migrant Asian population to the 

United States reach those of the host country implicating the role of environment in 

the incidence of colon cancer(?-10). One plausible reason for the difference in 

incidence rates was attributed to the consumption of soy by Asian population (7). 

Soy is a good source of several phytochemicals, including the isoflavones genistein 

and daidzein, in addition to the high quality protein (6, 9, 11). The structural 

similarity of isoflavones to that of endogenous estrogen and their weak estrogenic 

property classified them as phytoestrogens (12, 13). 
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A role of hormones in the etiology of colon cancer was observed first by 

Fraumeni et al who noted that nuns experienced an excess of known hormone- 

associated cancers and also colon cancer (14). Ameta-analysis of 18 

epidemiological studies indicated a 20% reduction in colon cancer risk with hormone 

replacement therapy (HRT) (15). Furthermore, evidence from the Women's Health 

Initiative (WHI) also indicated that estrogen reduced the risk for colon cancer (16, 

17). However, subjects in that study who developed colon cancer were diagnosed 

with more advanced stages of colon cancer when using HRT compared to the 

placebo (16). 

Several epidemiological and case-controlled studies indicate an inverse 

association between the risk of colon cancer and intake of NSAIDs, including aspirin. 

(18). The decrease or regression of colon carcinogenesis by NSAIDs has been 

attributed to the specific inhibition of the cyclooxygenase (COX) enzymes by these 

classes of drugs. COX catalyzes the committed step in prostaglandin synthesis. 

Two isoforms of COX (COX-1 and COX-2) are known (19, 20). COX-1 is a 

constitutively expressed enzyme and has a housekeeping role helping to maintain 

physiological functions such as cytoprotection and blood flow (21). COX-2 is 

inducible as it is dependent on extracellular and intracellular stimuli and is 

upregulated with inflammation (22) cellular proliferation, differentiation, and 

tumorigenesis (23, 24). The suppression of COX-2 induction by interleukin 1 ~3 (IL- 

1 R) with chronic treatment of 17R-estradiol in rat cerebral vascular blood vessel 

suggests a role for estrogen in modulating COX-2 (25). Moreover, there is also 

evidence suggesting a strong link between COX/PGE2 (Prostaglandin E2) signaling 
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and the adenomatous polyposis coli (APC)/~3-catenin/TCF pathway by estrogen 

whose downstream target protein includes COX-2 (26-28). There is further evidence 

implicating the regulation of COX-2 by the Wnt and Ras pathways suggesting a 

cross talk between the pathways involving estrogen in colon carcinogenesis (29). 

Thus, regulation/inhibition of COX-2 by estrogenic compounds would be an effective 

way to inhibit colon carcinogenesis in the initial stages of the multistage 

carcinogenesis. 

Previously we showed that estrone (E1) was protective against colon 

tumorigenesis in mice treated with azoxymethane (30). In this study we evaluated 

the hypothesis that genistein reduces COX-2 and protects against azoxymethane 

(AOM) induced aberrant crypt foci (ACF) formation in mice. 
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MATERIALS AND METHODS 

Chemicals: Azoxymethane (AOM) was obtained from Sigma-Aldrich (St. Louis, MO) 

in 10 mg isovials and stored at -20°C which was resuspended in 10m1 distilled water. 

Genistein and Estrone (E1) were obtained from LC Laboratories (Woburn, MA) and 

Sigma-Aldrich (St. Louis, MO) respectively. 

Animals, diet and study design: The experimental protocol was approved by the 

Institutional Animal Care and Use Committee, Iowa State University and followed 

AAALAC standards. Thirty four female ovariectomized (3wks of age) C57BL/J6 

mice (Charles River, Portage, MI) were housed 4 per cage and maintained in a 

temperature and humidity controlled animal facility with a 12 hr light cycle. Animals 

were fed a modified AIN93G diet containing casein as the protein source for 3 days 

of acclimatization, after which they were assigned randomly to one of the four diet 

groups; Casein (n=8) as control, soy protein without Isoflavones (IF) (Soy-IF) (n=8), 

soy with genistein (Soy+Gen) (n=9) and soy with estrone (Soy+E1) (n=9) (Table. 

2.1). The diets were isocaloric and the soy protein was treated by the manufacturer 

(Archer Daniels Midland (Decatur, IL) to remove the majority of the isoflavones (IF). 

The same lot and batch of protein was used for all of the diets containing soy protein 

as the protein source. The dose of genistein (250mg/kg diet) was based on our 

previous finding of delayed mammary tumorigenesis in mice fed this concentration 

(31). The dose of E1 was extrapolated from the typical human HRT dose for 

Premarin (0.625 mg/d) and shown to reduce tumor incidence previously (30). 

Casein diet was corrected for the concentration of phytate in the soy protein diet. 

Beginning at 4 wks of age, the mice were injected intraperitoneally with 10 mg 
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azoxymethane (AOM; Sigma-Aldrich (St. Louis, MO) /kg body weight once a week 

for 6 wks. AOM injections were done at the same time of day throughout the study. 

Tissue sample collection 

Mice were anesthetized with Nembutal (Iowa State University veterinary pharmacy, 

Ames, IA, 3 mg per mouse) between 0800 and 1300 hrs, 6 weeks after the last AOM 

injection. A midlateral incision was made and the intestinal tract removed. The 

colon was rinsed, blotted, weighed and opened longitudinally. The colon was 

divided into 2 sections. The distal section of 2 cm length was fixed with 10% neutral 

formalin sandwiched between 2 microscope slides overnight. The remaining part of 

the colon was scraped with a microscope slide and the colonocytes collected in lysis 

buffer (150mM Nacl , 50mM Hepes and 1 %protease inhibitor mix) snap frozen in 

liquid nitrogen and stored in -80~C until used for Western blot analysis. Abdominal 

fat along with liver, cecum, spleen, heart and kidney were removed and weighed. 

Aberrant crypt foci 

Aberrant crypt foci (ACF) are altered lumina) openings with morphologically altered 

crypts in AOM induced rodents (32). After fixing overnight the distal colon was 

dipped in 0.2% solution of methylene blue in distilled water for 10 min rinsed with 

phosphate buffered saline for 5 min 2X and placed on a microscope slide with the 

mucosal surface up. Using a light microscope at 10X magnification, aberrant crypts 

were distinguished from the surrounding "normal-appearing" crypts using standard 

criteria and counted by two independent observers. 
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Quantification of Cyclooxygenase-2 by immunoblot 

Frozen homogenates of colonocytes were sonicated and centrifuged at 120,000 X g 

for 30 min at 4°C and the supernatants collected. Protein concentration of the 

supernatants was determined with the BCA protein assay kit (Sigma, St. Louis, MO). 

Protein extracts (5µg) were mixed with loading buffer, denatured and fractionated on 

10% SDS-polyacrylamide gels and then electrophoretically transferred to 

Nitrocellulose (Bio-Rad). On each gel, were included a prestained molecular weight 

color marker mix (Bio-Rad, Hercules, CA), a positive control of COX-2 (Sigma, St. 

Louis, MO) and an internal sample control comprised of a single mouse supernatant. 

After transfer, the membranes were blocked in 1.5% non-fat dry milk (Blotto; Santa 

Cruz Biotechnologies, Santa Cruz, CA) and 1.5% Bovine Serum Albumin (BSA) 

(Sigma, St. Louis, MO) for 2 hrs on a rocker at room temperature. Membranes 

were cut into 2 pieces based on molecular weight using the color bands from the 

prestained molecular weight marker. The individual strips were incubated with either 

mouse monoclonal anti-COX-2 antibody (1:10,000; Santa Cruz Biotechnology, 

Santa Cruz, CA) or mouse monoclonal anti-~-tubulin antibody (1:10,000; Santa Cruz 

Biotechnology) in blocking solution overnight at 4° C. Membranes were washed with 

Tris buffered saline (TBS) then probed with goat anti-mouse IgG-HRP conjugate 

(COX-2 1:50,000; ~-tubulin 1:5000; Santa Cruz Biotechnology). Target proteins were 

detected with West Femto Maximum Sensitivity Substrate (Pierce, Rockford, IL). 

The membrane was scanned and quantified with aBio-Rad GS-800 Densitometer 

(Bio-Rad Lab, Hercules, CA) using Quantity One software (Bio-Rad, Hercules, CA). 

~—tubulin served as the loading control. For each sample the ratio of sample COX-2 
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and the corresponding R-tubulin density was determined. A correction for intergel 

comparison was done using the internal sample control. To generate the correction 

factor, the internal sample control ratio of COX-2 and ~3-tubulin for each gel was 

determined and then an average across all gels was obtained. That average was 

divided by the individual gel internal sample control ratio and then used as a 

correction factor as follows 

N o rm a I ized COX-2 sample 

COX-2 sample ~ 

~-tU b U l l n sample 
~ J 

Correction 

A representative immunoblot is shown in Figure 3.1. Note the internal sample 

control and the COX-2 standard (std). 

Statistical analysis: Proc Mixed procedure was used to analyze aberrant crypt foci 

and COX-2 protein levels by one way analysis of variance (ANOVA). The body 

weight was analyzed using the Proc Mixed procedure while the organ weight data 

was analyzed vuith the General Linear Models (GLM) procedure of SAS (SAS 

Institute, Cary, NC). Differences among means were determined by the least- 

square (LS) Means component. Main effects and interactions were considered 

significant at P<_0.005 for organ weights and P<_0.05 for COX-2 protein density levels 

and number of ACFs after Tukey-Kramer adjustments. All measurements are 

reported as the mean ±SE. 
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RESULTS 

Mice fed the experiu~nental diets gained weight similarly throughout the study 

(Figure 3.2). However, slight differences in body weight due to diet were observed 

at termination (Table 3.1). The differences in body weight occurred during the last 2 

weeks of the study (Figure 3.2). Mice fed Soy-IF weighed slightly more than 

Soy+Gen at these time points. Mice fed Soy-IF had more abdominal fat than the 

Soy+Gen animals, which might explain this difference in body weight (Figure 3.3). 

When expressed as percent of body weight, colon, kidney, spleen weights were less 

in mice fed Soy-IF compared to Soy+E1 animals, and cecum weights were less in 

this Soy-IF group compared to all the diet groups (Table 3.1) (P<0.005) 

Aberrant crypt foci (ACF) 

ACF were observed in all mice irrespective of diet groups. The mean ACF ranged 

from 5-8 in each group. There was no significant statistical difference in the number 

of ACF across the four diet groups although the Soy+Gen group tended to have 

more number of ACF than the other diet groups (Figure 3.4). 

Cyclooxygenase-2 protein 

COX-2 protein levels as determined by western immunoblot in mice fed the Soy+E1 

or Soy+Gen were significantly less (P <_ 0.01) compared to the mice fed the Casein 

or Soy-IF diets (Figure. 3.5) 
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DISCUSSION 

The FDA recently approved a health claim for foods containing soy and 

recommended 25 g of soy protein per day to reduce cardiovascular disease risk 

(11). Some other health benefits associated with soy and soy foods include 

decreased bone loss and alleviation of menopausal symptoms. As a result, soy 

consumption is increasing in the United States. Also, many peri and 

postmenopausal women are using soy supplements or soy extracts that contain 

isoflavones to alleviate menopausal symptoms as an alternative to hormone 

replacement therapy (HF~T). Epidemiological studies have indicated associations 

between HRT and reproductive history with colon cancer risk, suggesting a role for 

estrogenic compounds in decreasing colon cancer risk (10, 16, 33-35). 

COX-2 has emerged as therapeutic and chemopreventive target for colon 

cancer with epidemiological and clinical studies indicating COX-2 inhibition is 

protective of colon cancer (22, 23, 36-39). Although the evidence is limited, COX- 

2 may be influenced by estrogens (25, 40). Hence the objective of this short term 

study was to determine i'f dietary genistein or estrone would affect COX-2 

expression in azoxymethane-treated mouse colon. We also used ACF as a pre- 

tumor marker. ACF has been widely used as an early indicator of tumorigenesis by 

many short-term studies (41). In this study we found no diet effect on ACF. This 

result contradicts with two other studies. A reduction in ACF was observed in 

AOM-treated rats fed soy concentrate with genistein than the soy concentrate alone 

diet (42). And Gee et al (32) reported an increase in the number of ACF in 

dimethylhydrazine-treated rats fed purified genistein or genistein-rich soy protein . 
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We previously showed mice fed Soy+E1 had lower tumor incidence than mice fed 

Soy-IF (30). Therefore the lack of response in ACF in this study by Soy+E1 was 

surprising. However, many studies reported conflicting results on the association 

between ACF and tumorigenesis (43-46). Certain dietary compounds such as 

cholic acid and 2-(Carboxyphenyl)retinamide 2-CPR are potent inhibitors of ACF 

formation but cause higher incidence of tumor formation in rats leading to 

conflicting correlation between ACF and tumors. It is not clear if ACF are true 

markers of tumor development and the current study would suggest that at least in 

the AOM-treated C57BL/J6 mice they are not. 

No difference in tumorigenesis was reported in APCmin mice fed soy protein 

with high or low isoflavorie supplementation (47). The diets fed to these mice were 

high in animal fat and lovv in fiber and calcium similar to a western diet, which could 

be a possible explanation for the lack of any effect. However, the number of small 

intestinal tumors in these mice was significantly reduced with a low isoflavone diet 

containing 300ppm of sulindac, a NSAID (47). In our study the addition of genistein 

to soy protein did not have an effect on ACF while Thiagarajan et al (42) found a 

smaller dose of genisteir~ (167mg/kg diet) with soy concentrate reduced ACF by 

50% in AOM-treated rats. 

The need for a better reliable preneoplastic marker is strongly emerging with 

these conflicting results. Yamada et al (48) proposed the use of ACF with 

~3-catenin/APC mutations that result in ~3-catenin nuclearization and dysregulation of 

the wnt signaling pathway as a better preneoplastic marker. They proposed that 

the dysplastic ACF that are mucin-depleted and have R-catenin accumulation in the 
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nucleus are more correlated with tumorigenesis (49). We attempted to identify 

mucin depleted foci in the distal colon of mice from the current study using alcian 

blue stain in 3% acetic acid. However, we were unable to clearly distinguish the 

mucin depleted foci from the surrounding crypts. This may have been due to the 

number of ACF with mucin depletion to be only about 1-2% (refer Figure 4.1) and 

with the incidence of about 5-8 ACF per mouse in our current study the probability 

of us visualizing the mucin depleted foci is very low. 

Previously we reported the reduction of colon tumorigenesis in mice fed 

Soy+E1 that innplicated the role of estrogen in colon carcinogenesis (30). We also 

observed a tendency for reduction in tumor incidence in the Soy+Gen group, 

although not statistically significant, thus indicating a trend towards lower colon 

cancer incidence with estrogen-like compounds. This is supported by the finding of 

Javid et al (50) who reported prevention of intestinal tumorigenesis in 

ovariectomized APCm"' mice treated with estradiol . 

Our current observation of a significant reduction in COX-2 protein levels in 

mice fed genistein or est~one suggests a protective action of estrogens may be 

mediated through attenuation of COX-2 protein levels. This finding contradicts a 

previous report that geni~tein added to a casein diet had no effect on tumorigenesis 

in AOM-treated rats and increased tumor multiplicity (51). They also observed no 

effect on COX-2 activity and a significant suppressive effect on 15-PGDH (15- 

hydroxyprostaglandin Fla dehydrogenase) activity by genistein. Several 

differences in our study may provide explanation for these opposing results. Our 

study was done using ovariectomized female mice, whereas Rao et al (51) used 
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male rats (47, 51). It is possible that the response to AOM and/or the dietary 

treatments differs between males and females and between rats and mice. 

Moreover, the synergistic effect of soy protein with estrogenic compounds 

compared to the casein-k~ased diet with added genistein (51) might explain the 

differences. 

The primary therapy for patients with hereditary nonpolyposis colorectal 

cancer (HNPCC) and familial adenomatous polyposis (FAP) are the selective COX- 

2 inhibitors (23, 28, 36, 38). Recently, COX inhibitors have been taken off the 

market because of serious side-effects including cardiovascular risks (52, 53). The 

need for alternative COX-2 inhibitors without side-effects makes this study of 

significance for further research. COX-2 is the rate limiting step in the generation of 

prostaglandins including PGE2 and PGF2a (19, 36, 54). These prostanoids 

mediate cellular proliferation via the wnt or Ras signaling pathways (29). Although, 

the precise mechanism by which estrogens affect COX-2 levels in not known, 

several mechanisms may be proposed. One hypothesis is that genistein and E1 

mediate their ~rrotective effects via estrogen receptors ERa or ERR (28, 30, 55). A 

77% increase un tumorig~nesis was reported in ovariectomized Min/+ mice 

compared to controls that were treated with 17(3-estradiol (56). Another hypothesis 

is that estrogen might influence through ER-independent pathways such as the wnt 

signaling pathway (27). 

Genistein has been extensively studied and many proposed modes of action 

have been proposed apart from its phytoestrogenic activity in the regulation of cell 

growth (57). In the present study, we observed inhibition of COX-2 protein levels in 
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response to short term feeding of genistein. It would be interesting to observe the 

effects of genistein with chronic administration and to measure COX-2 protein 

levels as well as activity. More studies elucidating the mode of action of genistein 

with regard to dosage, time of exposure in combination with other dietary factors 

such as soy are essential to understand the role of genistein and estrogenic 

compounds and their synergistic effect in colorectal carcinogenesis. 

In conclusion, we found that dietary genistein and estrone significantly 

reduced COX-2 protein levels in AOM-treated C57BL/J6 mouse colon. The 

mechanism of action leading to attenuation of COX-2 protein levels remain to be 

elucidated. It is likely that the effect of genistein in reducing COX-2 protein levels is 

mediated via an ER-dependent pathway. However, the possibility of a cross talk 

between the wnt signaling pathways, tyrosine protein kinase pathway cannot be 

ruled out. 
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Figure legends: 

Figure 3.1. A representative immunoblot in azoxymethane (AOM) treated colonic 

mucosa of mouse. An internal standard comprised of a sample that was run on 

each gel (R), as was the C:OX-2 standard (std) 

Figure 3.2. Body weight of mice fed experimental diets 

Figure 3.3. Body weight of mice at 14 and 15 weeks of age. Mice fed Soy-IF 

weighed more than the Soy+Gen mice at these time points. P<_0.006 

Figure 3.4. Abdominal fat expressed as percent of body weight in mice fed the 

experimental diets. Mice fed Soy+IF had more fat compared to mice fed Soy+Gen 

P<_0.005 

Figure 3.5. Mean number of Aberrant crypt foci (ACF) in mice fed experimental 

diets. Total number of ACF in each diet group was determined by 2 independent 

observers. Data expressed as mean with standard error shown in T bars. There 

was no significant difference (P<_ 0.05) due to diet treatment. 

Figure. 3.6 Effect of experimental diets on COX-2 protein levels in azoxymethane 

(AOM) injected mice. Different letters on the bars represent significant differences 

among diets (P<_ 0.01). There was no difference with Casein and Soy-IF diet group. 
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* Indicates a significant difference between casein and Soy+E1 (P<_ 0.004) and 

Casein and Soy+Gen (P<_ 0.006) in the least square mean of 9 rats ± SEM. 
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Figure 3.1 A representative immunoblot 
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Figure 3.2. Body weight gain of mice fed experimental diets 
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Figure 3.3. Body weight of mice at 14 and 15 weeks of age 
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Figure 3.4 Abdominal fat expressed a~► a percent of body weight 
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Figure 3.5 Mean number of Aberrant crypts across different diet groups 

10 

6 

4 

a a 

a 

a 

Casein Soy-IF Soy + Gen Soy + E 1 



www.manaraa.com

68 

Figure 3.6 Quantification of COX-2 protein expression in mice fed experimental diet 
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CHAPTER4 

DISCUSSION 

It has been suggested that populations that consume soy have decreased 

incidence of CRC (1, 2, 4, 28). However, epidemiological and animal studies 

examining the relationship of soy and soy isoflavone intake and risk of CRC have 

produced conflicting results (28, 41, 42) (Table 1.1). Some epidemiological and 

case controlled studies have looked for a role for estrogen in CRC (45, 128, 128). 

For example, the outcome of the Women's Health Initiative (WHI) trial provided 

evidence for a protective role for estrogen in colon cancer risk with a 20% reduction 

in CRC (47, 49). However, animal studies are a means to deduce the direct role of 

estrogen and estrogenic compounds such as phytoestrogens (genistein) in the 

molecular mechanism of CRC. One possible mechanism for estrogen to affect CRC 

is through COX-2. NSAIDs and COX-2 inhibitors are the primary therapy for FAP 

patients and have been shown to decrease or regress CRC (130, 131). Although, 

there is evidence of estrogen influencing COX-2 in cerebral blood vessels (113), 

vascular system (114) and uterine tissues (138), the correlation between estrogens 

and COX-2 in colon has not been examined. Previously, we found diets 

containing soy protein with estrone decreased tumor incidence in mice (36). To 

further elucidate whether estrogen's influence on CRC is via suppression of COX-2 

protein levels, this short term study was conducted. 

Optimization of Western blot technique 

In order to develop the methodology to quantify the COX-2 protein levels by 

western immunoblot (WIB) we ran several trials using samples obtained from mice 
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that had been treated with AOM for one or two weeks. As part of the method 

refinement, the lysis buffer used to collect the colonocytes was arrived at after 

several trials using lysis buffers from Singh et al (139) and Davidson et al (140). 

Initial attempts to detect COX-2 protein were discouraging as we were able to detect 

only the positive control (Sigma, St. Louis, MO). Further trials with another positive 

control from Cayman Chemicals, Ann Arbor, MI and primary antibody also yielded 

mixed results. (Positive control —Catalog no. 160126, 10004910, primary antibody 

catalog no. 160'106). We were able to detect only the positive control when loaded 

in high amounts. We also attempted to load greater than 150 pg of protein into each 

well. We tried different detection systems such as Super signal West Pico mouse 

IgG detection kit (Pierce, Rockford, IL), ECL plus western blotting detection system 

(Amersham Biosciences, Buckinghamshire, UK). We concluded that the amount of 

COX-2 expressed is too low in mouse colon samples. However, the Pierce West 

Femto Super sensitivy substrate yielded good detection of the COX-2 protein in the 

samples along with the positive control of COX-2 from Sigma, St. Louis, MO. This 

protocol allowed us to consistently visualize COX-2 in our samples. We relied on 

one mouse sample as an internal sample control that was repeated in each gel to 

adjust film exposure time to minimize inter-gel variance. We also optimized the 

protocol for ~3-tubulin to be used as a loading control for each sample. 

Quantification of COX-2 protein levels in samples 

In the WIB experiments each sample was repeated twice and the average of the 

normalized values was used for statistical analysis. To normalize, the OD ratio of 

COX-2 and its corresponding ~3-tubulin value for each sample was determined and 
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then a correction for inter gel variation done using the internal sample control. To 

generate the correction factor the ratio across all gels of the COX-2 and 

corresponding ~i-tubulin of internal sample control was averaged. Then the ratio of 

this average value to the individual internal sample control value for an individual gel 

was calculated and used as a correction factor to normalize the COX-2 OD for each 

sample. 

We determined the coefficient of variance of repeat measures to check for the 

repeatability of the WIB with the same samples. To arrive at the coefficient of 

variance we averaged the OD of internal sample control value across all gels and 

determined the standard deviation. The percentage ratio of standard deviation to 

mean gave the coefficient of variance. The inter gel variation of COX-2 was 13% 

which is a very low variation. The intra gel variation was (<2%) suggesting little 

variance in loading as well as repeatability of the WIB. (Table 5.1) shows the mean 

and the standard deviation of the internal standard control across the gels and the 

coefficient of variance obtained in percent. 

We also did a paired t-test and cone-way analysis of variance test to account 

for variability for the repeatability of measure values between the samples and within 

the samples which gave a low variance (0.045) suggesting little variability between 

repeatability. 

Our hypothesis that dietary estrogens (estrone and genistein) suppresses the 

COX-2 protein levels in colon was demonstrated with a significant decrease in COX-

2 levels in the mice fed estrone and genistein with soy protein in this short term 

study. To our knowledge this is the first study that demonstrated that oral dietary 

estrogens influence COX-2 protein levels in colon of mice. This observation is 
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supporting our earlier report of decreased tumor incidence in mice fed estrone 

suggesting the protective effect of estrone being mediated by suppression of COX-2. 

This finding is also in line with earlier reports of Singh et al (139) who reported the 

modulation of COX-2 protein levels in AOM-treated rat colon by high fat corn oil and 

high fat fish oil diet. The high fat fish oil decreased COX-2 expression in colon 

mucosa and tumors but a reverse effect was seen with high fat corn oil. However, 

they did not observe the effect of dietary estrogens on colon of mice. Another report 

from the same group contradicts our observation of suppression of COX-2 by dietary 

genistein. In AOM-treated rats fed casein based genistein diet an increase in tumor 

multiplicity with no effect on COX-2 activity and tumor incidence was reported (38). 

They also reported a significant suppressive effect on 15-PGDH (15-

hydroxyprostaglandin Fla dehydrogenase) activity by genistein. Several differences 

in our study may provide explanation for these opposing results. Our study was 

done using ovariectomized female mice compared to male rats. Differences in 

response to AOM, the dietary treatments before and after carcinogenic treatment 

and response due to gender difference might have influenced the outcome. It is also 

important to note that they did not measure the COX-2 protein levels or the PGE2 

levels, the major PG that has been demonstrated to influence tumorigenesis. They 

had measured 8-isoprostane that is similar to PG and is generated by nonenzymatic 

metabolism of AA (103) 

Our observation of suppression of COX-2 by dietary estrogens is novel and 

has potential significance. The precise mechanisms by which estrogens mediate 

this effect are not clearly known. Several hypotheses to explain this observation are 

possible. One hypothesis is that the dietary estrogens mediate their suppressive 
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effects via ER, possibly by ERR. Normal human colon expresses both ERa and ER~3 

but ER~3 appears to be the dominant receptor in the colon that is selectively lost in 

malignant tissues (51-53). Ospina et al (113) observed repression of COX-2 gene 

by estradiol in cerebral blood vessel when stimulated with IL-~3 in a ER dependent 

manner. Also, in human uterine microvascular endothelial cells that expressed ER~3 

mRNA and protein abundantly, treatment of estradiol (10-10 to 10"6 M) increased 

COX-2 mRNA levels by 2.3 fold suggesting upregulation of COX-2 being mediated 

in an ER dependent pathway (114). 

In human colon cancer DLD-1 cells genistein and other chemopreventive 

compounds including resveratrol and quercetin having resorcin moiety suppressed 

the COX-2 promoter activity with and without TGFa- stimulation suggesting 

modulation at the promoter level by these estrogen like compounds (115). 

Furthermore, Hertrampf et al (138) reported tissue specific modulation of COX-2 

expression in the uterus and vena cava by estrogens and phytoestrogens. They 

found that administration of 173-estradiol (3~g/mg body weight/day for 3 days) in 

ovariectomized female rats stimulated COX-2 mRNA expression in the uterus but 

downregulated in the vena cava. Also adose-dependent downregulation of COX-2 

in vena cava was observed with administration of genistein at very low dose (0.5 

mg/kg of body weight) with no effect in the uterus. These studies suggest a 

transcriptional effect of estrogenic compounds on COX-2 (115). There is also some 

evidence suggesting regulation of COX-2 mRNA expression by at least two different 

molecular mechanisms including modulation of the transcription rate of the gene 

and/or by post-transcriptional regulation of mRNA stability (141). It is possible that 

estrogen is influencing this effect in an ER dependent pathway. Also, the two 
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receptors (ERa and ER~3) may function in opposite ways in modulating the effects of 

estrogen. The presence of different isoforms of ERR as well as the ability of ER to 

form homo or heterodimers suggests a complex mechanism that involves tissue 

specific modulation of COX-2 by estrogen. These ligand (estrogen/phytoestrogen) 

bound ER form a stable dimer that then interacts with specific estrogen response 

elements to modulate the transcription of target genes. 

Another hypothesis is that genistein and estrone alter ER-independent 

pathways in the colon. Weak estrogenicity of genistein and its other purported 

properties in inhibiting tyrosine kinases (29), DNA topoisomerases (142) and 

regulation of cell growth might possibly mediate this suppressive effect. However, 

our data does not address this concept that genistein suppresses COX-2 via 

inhibition of intracellular signaling pathways related to tyrosine kinases or DNA 

topoisomerases. Moreover, estrogen can also mediate its effect via nonnuclear 

estrogen-signaling pathway. These cell membrane receptors that are suggested to 

be similar to intracellular ER are located in cell membrane invaginations called 

caveola and are linked to the mitogen-activated protein kinase pathway resulting in 

rapid non nuclear effect such as short-term vasodilation of coronary arteries (143). 

There is also evidence suggesting across-talk between different signaling pathways 

such as wnt and ras influenced by estrogen (125). In the uterine tissue, estradiol 

increased the expression of wnt4 protein thereby activating the canonical wnt 

signaling pathway and promoted growth via modulation of downstream regulatory 

genes of ~3-catenin such as cyclin-D, c-myc, c-fos and COX-2 in an ER-independent 

pathway (124). Differential expression of COX-2 via the wnt signaling pathway has 

also been reported in colon epithelial cells that differ in APC (123). These reports 
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suggest a complex interplay of different signaling pathways that estrogen might 

possibly influence in modulating the COX-2 protein levels. 

The metabolism of estrogens in the colon has not been well described, 

although 17~3HSD activity and aromatase/cytochrome P450 activity are present in 

colon. Peripheral synthesis of estrogen and the interconversion of estrone and 

estrodiol depending on the reducing or oxidizing activity 17RHSD also might 

influence the estrogen mediated suppressive effect of COX-2. Inactivation of 

estradiol via conversion to estrone has been suggested to have a protective effect 

while loss of this inactivation may lead to cell proliferation via an ER-dependent 

pathway (59). Our study does not specifically address this question but suggested 

a protective effect of estrone via suppression of COX-2. 

Thus, many questions remain to be answered including the role of estrogen 

receptors in mediating the effect of phytoestrogens on colon cells, the role of 

estrogen receptors and estrogen metabolizing enzymes in the colon, changes in 

estrogen receptor expression and/or responsiveness during the carcinogenic 

process and the overall role of dietary factors on estrogen receptors and estrogen 

related pathway in colon. 

We also attempted to investigate the correlation of ACF and mucin depleted 

foci (MDF) with dietary factors. Our rationale to do MDF along with ACF was for the 

following reasons. 

1. Numerous studies have used ACF as a short-term marker for predicting colon 

carcinogenesis especially for chemopreventive compounds (34, 35). 

However, conflicting results on the association between ACF and tumor 

development have been reported (86, 87). Zheng et al (86) reported a higher 
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tumor incidence in rats administered 2-carboxyphenyl retinamide (2-CPR) 

compared to controls, but reduced ACF incidence previously. Moreover, rats 

fed cholic acid had fewer ACF but more tumors than rats fed a control diet 

which suggest ACF may not correlate with tumor incidence (86, 87). Also, the 

incidence of ACF in genetically susceptible strains and resistant strains of 

mice were similar but differed in tumor incidence suggested a lack of 

correlation of number of ACF with tumorigenesis (88). These results 

suggested that ACF may be a preliminary biomarker but other events are 

involved in advancing ACF to adenoma or adenocarcinoma. 

2. It has been suggested that ACF with mucin depletion and R-catenin 

accumulation along with other genetic alterations correlated to progression of 

ACF to adenoma-carcinoma (133, 144, 145). Mucin depletion of ACF has 

also been observed in human colon cancer specimens (133). Figure 4.1 

presented from reference (133) depicts the significance of ACF with MDF 

(1.3% of ACF) and ~3- catenin accumulated crypts with their correlation to 

tumorigenesis. 

Thus, in order to have a better preneoplastic marker and to investigate the role of 

estrogen and genistein in modulating ACF and MDF and their correlation, we 

attempted to quantify both ACF and MDF. However, we faced difficulty in clearly 

distinguishing the MDF. One possible reason for our inability to identify MDF could 

be due to the low percent of ACF with mucin depletion in our samples. Considering 

the incidence of ACF in our study, 5-8 per colon the probability of detecting MDF 

was very low (~1 %) (133). Other factors such as the short duration of the study, and 
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the potential effect of diet and estrogenic compounds also might have influenced the 

outcome. 

Our observation of no effect of dietary estrogens on ACF does not agree with 

other studies studying the effect of soy and soy isoflavones on ACF (34, 37). The 

use of different chemicals in inducing ACF such as AOM or dimethylhydrazine 

(DMH), the time of exposure to the carcinogen, species differences, as well as 

dietary regimens before or after carcinogen exposure might have influenced these 

Figure 4.1 Aberrant crypt foci, Mucin depleted foci and ~3-catenin accumulated crypts 
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results. However, it is not clear if ACF are true markers of tumor development and 

the lack of response of ACF in the Soy+E1 fed mice would suggest that at least in 

the AOM-treated C57BL/J6 mouse they are not predictive of tumor development. 

Mice fed the experimental diets gained weight similarly throughout the study 

(Figure 3.2). However, slight differences in body weight due to diet were observed 

at termination (Vable 3.1). The differences in body weight occurred during the last 2 

weeks of the study (Figure 3.2.). Mice fed Soy-IF weighed slightly more than mice 

fed Soy+Gen. Mice fed Soy-IF had more abdominal fat than mice fed Soy+Gen 

which may partially explain the differences in body weight. We expressed organ 

weights as a percent of body weight to correct for differences in animal size. We 

observed that organ weights including colon, cecum, spleen and kidney of mice fed 

Soy-IF diets were significantly lower than from mice fed Soy+E1 (P<_ 0.005) (Table 

3.1). The reason for this is not known 

The primary therapy for patients with HNPCC and FAP has been COX 

inhibition. COX-2 expression is rapidly induced by growth factors, oncogenes, and 

tumor promoters. Previous research has shown elevated levels of eicosanoids, 

particularly PGE2 during initiation and post initiation stages generated by COX-2 

activity as well as the COX-2 activity increases with more advances of tumor (98, 

106, 146). COX-2 is the rate limiting step in the generation of prostaglandins 

including PGE2 and PGF2a that may mediate cellular proliferation via the wnt or 

Ras signaling pathways (125). Also, it is been suggested that COX-2 generated 

prostaglandins mediate various physiological effects including apoptosis, immune 

modulation, and angiogenesis as well as modulation of second messenger signaling 

pathways such as elevation of intracellular cyclic AMP(102). Thus, our observation 
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of soy protein with estrone and soy protein with genistein in suppression of COX-2 is 

of potential significance. There is also a need to investigate the complex molecular 

mechanisms that are involved in the tissue specific regulation of the COX-gene by 

estrogenic compounds in the colon. 

This observation is helpful in the use of plant-derived phytochemicals as 

chemopreventive agents which circumvent the various side effects associated with 

COX inhibition by NSAIDs as well as COX-2 specific inhibitors. However, genistein 

may not be completely without negative side effects. There is evidence for 

reproductive, genetic, thyroid and developmental toxicity from animal studies of 

genistein exposure (147, 148). There is also controversy with the exposure of 

genistein in infants fed soy formula and their physiological effects on the immune 

system as well (148). Thus, research in this area is still in its nascent stage in 

determining their overall affect as well as in colon carcinogenesis. 
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Table 5.1 Inter and intra-gel coefficient variances (CV) of western blotting 

Inter-g e I C ®X-2 
Mean 0.37 
SD 0.05 
CV% 13.78 
n=8 

Intra-gel 
Mean 6.54 
SD 0.12 
CV% 1.89 
n=4 
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Example experiment data sheet 

Experiment # Date 

TITLE: 
Western Blot Analysis of COX-2 expression in Casein, Soy-IF, Soy+Gen, Soy+E1 
fed ovariectomized C57BL/J6 mice 

PURPOSE: 
In this experiment, COX-2 protein levels will be examined in mice colon that were 
fed 4 diet groups viz. Casein, Soy-IF, Soy+Gen, Soy+E1 after 6weeks of last dose of 
6 weeks of AOM (10mg/kg of body weight). The colon cells were scraped using a 
microscope slide and collected in a lysis buffer (150mM NaCI, 50mM hepes with 1% 
protease inhibitors) that were flash frozen in liquid nitrogen and ultrasonicated for 
3X15 secs, 15 secs apart and spun at 120,000 g called the supernatant(SN) and 
stored in -80°C at Food sciences building 

The tubes used were the 100u1 aliquots from the samples spun on Oct 17, 05 
From the earlier results that indicated thicker, stronger bands at 1 min exposure of 
film and 5 min exposure we decided to go for lesser concentration of the protein. 

10/21 /05: Quantified the protein by BCA protein assay kit. 

1. Block 1.5% BSA and 1.5% milk in TBS 
2. Detection system: West Femto super sensitivity substrate 
3. Santa-Cruz 1 °antibody (1:10,000) —overnight incubation 
4. 2° antibody mouse (goat anti-mouse HRP conjugated) at 1:50,000 for anti-

cox-2 and 1:5000 for b-tubulin 
5. COX-2 standard (1 ul (0.47mg/ml) diluted in 1400u1 of 1 X loading buffer) 

METHODS: 
The Western protocol is using 0.1% SDS in the running buffer and using 10% 
minigels made as follows: 

FOR 2 MINIGELS (1.5mm thick) 10% resolving 4% stacking 
30% Acrylamide/0.8% Bisacrylamide 6ml 0.67 ml 
1.5M Tris, pH 8.8 0.5M Tris pH 6.8 5 ml 1.25 ml 
dH2O 8.10 ml 3.07 ml 
10% S®S 200u1 50 ul 
TEMED (Biorad #161-0800) 20u1 5 ul 
APS (10%) 100u1 25 ul 
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MATERIALS: 

Cat. # Lot # Dilutions Comments 
Mol. Wt 161- Kaleidoscope prestained 
marker 0324 standards control — 99462 — Bio-

Rad 
Cox-2 std C-0858 Human, recombinant expressed 

in Sf21 cells, Sigma 
1°Cox-2 Sc- H2504 1:10,000 Mouse monoclonal IgG 200ug/ml 

19999 —Santa Cruz 
2° Sc- B2505 1:50,000 Goat anti-mouse igG-HRP —

2005 Santa Cruz 
❑-tubulin SC- 1:10,000 Santa Cruz biotechnology inc. 

5274 Mol. Wt 55kDa 
West 
femto 
substrate 

34094 1:1 Pierce-super signal west femto 
maximum sensitivity substrate 

Gel PBCOX-2 Expt #Date 

No. Mouse # -diet 
(cage#, diet 
group, Mouse 
era hole) 

Amount 
of 
protein 
ug 

Volume 
of 
sample / 
well ul 

6X SB 1XSB Total 
volume/ 
well - ul 

1 Blank 30 30 
2 1 CN- Casein 5 11.5 2.3 16.2 30 
3 31N-Soy-IF 5 10.4 2.1 17.5 30 
4 5GL-Soy+Gen 5 11.7 2.3 15.9 30 
5 8EL- Soy+E1 5 9.8 2 18.3 30 
6 cox-2 std 

(0.336ng/ul) 
10ng 30 

7 Mol.wt std 10 
8 2CB -casein 5 13.3 2.7 14.1 30 
9 41B —Soy-IF 5 13.1 2.6 14.2 30 
10 6GL Soy+gen 5 12.0 2.4 15.7 30 
11 9EB Soy+E1 5 9.8 2.0 18.3 30 
12 Blank 30 
13 31R- repeat ctrl 5 7.8 1.6 20.6 30 
14 Mol. Wt std 10 
15 Blank 
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Gel PBCOX-2 Expt #Date 

No. Mouse # -diet 
(cage#, diet 
group, Mouse 
era hole) 

Amount 
of 
protein 
ug 

Volume 
of 
sample / 
well ul 

6X SB 1XSB Total 
volume/ 
well - ul 

1 Blank 30 30 
2 Mol. wt std 10 
3 2CN- Casein 5 11.2 2.2 16.5 30 
4 41 N-Soy-I F 5 13.8 2.8 13.4 30 
5 6GN-Soy+Gen 5 9.5 1.9 18.6 30 
6 10EN-Soy+E1 5 10.8 2.2 17.1 30 
7 COX-2 STD 10ng 30 
8 2CR -casein 5 8.4 1.7 19.9 30 
9 41R —Soy-IF 5 11.4 2.3 16.3 30 
10 6GR Soy+gen 5 10.0 2.0 18.0 30 
11 8EN Soy+E1 5 14.0 2.8 13.2 30 
12 Blank 30 30 
13 31R-repeat ctrl 5 7.8 1.6 20.6 30 
14 M o I . wt std 10 
15 Blank 30 

Experiment Data Sheet 
Cox-2 Western Experiment #PBCox-2-03 

Ames: 
Gels Gels 1 Gel 2 
Date of Run 
Resolving gel polymerizn 
Stacking gel polymerizn 
Load samples 
Run time: const volts 200 
v o l t:~ ~ 1 h r 
Start/end current of run 
Gel: in transfer buffer 
Transfer time: const voltage 
100if 
Start/end current of transfer 
Block in 1.5 %milk &1.5% 
Bsa 
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